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I. INTRODUCTION

Fluids composed of mixtures of nonspherical molecules
show a rich phase behavior which poses challenging theoret-
ical and computational questions. Their microscopic struc-
ture has been investigated in the past decades with a variety
of tools: Monte Carlo �MC� simulation �1–3� and Onsager
theory and its improved versions �4–6�, leading to the latest
version of density functional theory �7,8�. Mixtures of rod-
and disk-shaped particles have attracted special interest:
They have been shown to form a range of liquid crystal
phases, including biaxial phases �1�.

As for single component fluids, the microscopic structure
of a fluid mixture is important in determining, e.g., thermo-
dynamics or phase behavior �9,10�. In this paper, we com-
pute the microscopic properties of rod-disk molecular mix-
tures using MC simulations and integral equation theory
�IET�. A key component of the theory is the closure relation,
most generally formulated by defining a function called the
bridge function. We continue the exploration of the bridge
function for fluids made of nonspherical molecules that we
have started in our previous work �11,12�. The system stud-
ied here is a binary mixture of prolate and oblate axially
symmetric spheroids of equal volume and characterized by
the major diameters Ap, Bo and minor diameters Bp, Ao, re-
spectively, with aspect ratios �elongations� ep=Ap /Bp=3, eo

=Ao /Bo=1 /3. MC simulations are used to compute the two-
particle distribution function; from the Ornstein-Zernike
�OZ� equation we can obtain the direct correlation function
and the bridge function. The MC results are compared to IET
in two versions: The hypernetted chain �HNC� approxima-
tion and an improved closure that uses the so-called modified
Verlet bridge function �MV�.

This paper is organized as follows. Section II presents the
general formalism in the case of a binary mixture for the
spherical harmonic expansion of the distribution function of
interest, the OZ equation, and IET. Section III presents the
details of the MC calculation; the numerical results are dis-
cussed in Sec. IV. The conclusions are presented in Sec. V.

II. GENERAL FORMALISM

A. Correlation function and their angular expansion

In order to establish notation we present briefly the mix-
ture correlation functions. The formal relations between the
correlation functions described in Ref. �11� can be used di-
rectly in this paper if one adds a species label to the position
and the orientation coordinates of each molecule. The pair
functions of interest depend on the intermolecular vector r12,
the molecular orientations u1 and u2, and the particle species
�, � �prolate or oblate� of the given molecules. In order to
facilitate their calculation from simulation and IET, the an-
gular variation of these functions is expanded in basis sets of
spherical harmonics Y�m�u�. There are two useful choices for
this expansion �9,13�. The first is the laboratory frame in
which an arbitrary pair function F���1,2��F���u1 ,u2 ,r12�
is expanded as follows:

F���1,2� = �
�1�2�

F��
�1�2��r12���1�2��u1,u2, r̂12� . �1�

Here r12= �r12� is the center-center separation and r̂12
=r12 / �r12� is the unit vector along r12. The expansion func-
tions ��1�2� are rotational invariants defined by

��1�2��u1,u2, r̂12� = 4� �
m1m2m

� �1 �2 �

m1 m2 m
	

�Y�1m1
�u1�Y�2m2

�u2�C�m�r̂12� , �2�

where C�m�r̂12�=
4� / �2�+1�Y�m�r̂12� and the � �1

m1

�2

m2

�
m

� are
the standard 3j coefficients.

The alternative choice is the molecular frame, where the
intermolecular vector is taken to be parallel to the z axis. In
this frame the expansion reads

F���1,2� = 4� �
�1�2�

F�1�2�
�� �r12�Y�1��u1�Y�2�̄�u2� , �3�

where �̄=−�. The expansion coefficients may be trans-
formed between frames via the so-called “chi” transform and
its inverse
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F�1�2�
�� �r� = �

�
��1 �2 �

� �̄ 0
	F��

�1�2��r� , �4a�

F��
�1�2��r� = �2� + 1��

�

��1 �2 �

� �̄ 0
	F�1�2�

�� �r� . �4b�

It is often more convenient to work in reciprocal space. Both
the laboratory and molecular frame expansions may still be

used for the Fourier-transformed pair function F̃���1,2�
� F̃���u1 ,u2 ,k�

F̃���1,2� = 4� �
�1�2�

F̃��
�1�2��k���1�2��u1,u2, k̂� , �5a�

F̃���1,2� = 4� �
�1�2�

F̃�1�2�
�� �k�Y�1��u1�Y�2�̄�u2� . �5b�

The corresponding expansion coefficients are linked again by
the chi-transform. The molecular frame coefficients in real
and reciprocal space are linked by the Hankel transform

F̃��
�1�2��k� = 4�i�� dr r2F��

�1�2��r�j��kr� , �6a�

F��
�1�2��r� = �2�2�−1�− i��� dr k2F̃��

�1�2��k�j��kr� , �6b�

where j��x� is a spherical Bessel function. The F̃�1�2�
�� �k� are

found from the F̃��
�1�2��k� using the chi transform. As the pair

functions are invariant under exchange of molecules the ex-
pansion coefficients satisfy the conditions F��

�1�2��r�
=F��

�2�1��r� and F�1�2�
�� �r�=F�2�1�

�� �r�.

B. Ornstein-Zernike equation and integral equation theory

On a two-particle level, the structure of a multicomponent
fluid may be described by the set of total correlation func-
tions h���1,2�, or the direct correlation functions c���1,2�,
where � ,� run over all components. These functions are
linked via the Ornstein-Zernike equation, which for a mix-
ture of uniaxial particles reads

h���1,2� = c���1,2� +
�

4�
�
�
� d3 c���1,3�x�h���3,2� ,

�7�

where � is the number density and x� is the number fraction
of component �. The integration is over the position and
orientation of molecule 3.

For a self-consistent calculation, the OZ equation must be
supplemented with a closure relationship between the func-
tions h�� and c��, which can be obtained by straightforward
generalization of the one-component case �11�. The exact
closure reads

c���1,2� = �f���1,2� + 1�exp�	���1,2� + b���1,2��

− 	���1,2� − 1, �8�

where

f���1,2� = exp�− �V���1,2�� − 1

= �− 1, if the two molecules overlap,

0, otherwise



is the Mayer function and 	���1,2�=h���1,2�−c���1,2�.
This equation serves to define the set of bridge functions
b���1,2�; approximate theories usually propose a relation-
ship between these functions and 	���1,2�.

In this paper, we study the HNC closure, b���1,2�=0, and
a modified Verlet �MV� bridge function �14,15� defined by

b���1,2� = −
1
2	��

2 �1,2�
1 + 
��	���1,2�

. �9�

The coefficients 
�� depend on the total number density �
and the component number fractions x�. In the present case
we specialize to two components, defined by xp �prolate� and
xo=1−xp �oblate�. The functional form of the 
�� is deter-
mined by a combination of heuristical arguments aimed to
reduce the thermodynamic inconsistency of the equation of
state. In our case we follow Ref. �16� and use the effective
spheroid diameters dpp and doo, defined as the diameter of the
sphere equal in volume to a given spheroid; thus dpp

3 =ApBp
2,

etc. The interspecies effective diameter is defined as dpo
=dop= �dpp+doo� /2. The full expressions are of the form


�� = a��e−2� + 0.8 − 0.45� , �10�

where �= �� /6���xpdpp
3 +xodoo

3 � is the packing fraction and
the a�� coefficients depend upon the number fractions and
diameters. In fact, in this work, we specialize to spheroids of
equal volume, so all the diameters are equal d��=d, and the
expressions simplify to

a�� =
17

120�
. �11�

The coefficients b��
mnl�r� of the rotational invariant expansion

of the bridge function are computed from Eq. �9�, where the
product expansion of the rotational invariants is used �17�.
Starting from the equivalent form

�1 + 
��	���1,2��b���1,2� = − 1
2	��

2 �1,2� ,

and using the rotational invariant expansion, a linear system
is obtained for the coefficients b��

mnl�r� for each value of the
discretized r.

The numerical solution of the coupled set of nonlinear
equations resulting from the discretization of the OZ and
HNC or MV equation is obtained using the iterative Newton
solver developed in Ref. �18�.

III. SIMULATION

The total correlation function may be determined directly
from simulation through the pair distribution function
g���1,2�. The spherical harmonic coefficients are determined
as usual from �19�

gmn�
�� �r� = 4�g000

�� �r��Ym�
� �u1�Yn�̄

� �u2��r, �12�

where g000
�� �r� is the pair distribution function of the particle

centers and the angled brackets denote an average over all
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molecules in the shell �r ,r+�r�. These coefficients are de-
fined in the molecular frame described in Sec. II A �9�. From
Eq. �12� it follows that hmn�

�� �r�=gmn�
�� �r�−�m0�n0��0.

Since the OZ equation has the form of a convolution, it is
most conveniently solved in reciprocal space. Using the mo-
lecular frame expansion Eq. �5b� in Eq. �7� we have

h̃�1�2�
�� �k� − c̃�1�2�

�� �k� = �− 1����
�3,�

c̃�1�3�
�� �k�x�h̃�3�2�

�� �k� .

�13�

This set of linear equations may then be solved to give the
c̃�1�2�

�� �k� from which the real-space functions c���1,2� may
be determined.

The cavity function, defined by the relation
y���1,2��1+ f���1,2��=g���1,2�, is determined by directly
simulating a system containing two noninteracting cavity
particles �20�. In order to effectively sample y���1,2� across
a range of separations, generalized umbrella sampling is em-
ployed, with a bias function found iteratively using the
Wang-Landau algorithm �21,22�. Full details of this method
may be found in Ref. �11�.

The spherical harmonic coefficients of the bridge function
b���1,2� may be determined by inverting the exact closure
relation �Eq. �8��, which may be written as

y���1,2� = exp�h���1,2� − c���1,2� + b���1,2�� . �14�

The presence of the exponential on the right-hand side of Eq.
�14� is troublesome for the spherical harmonic expansions,
but it may be easily circumvented �11,17�. Taking the loga-
rithm and differentiating Eq. �14� with respect to r gives

�y���1,2�
�r

= y���1,2�� �h���1,2�
�r

−
�c���1,2�

�r
+

�b���1,2�
�r

� .

�15�

Inserting the spherical harmonic expansions of the pair func-
tions and integrating over angles gives �9�

dymn�
�� �r�
dr

= 4� �
m�n���

m�n���


�����
mm�m�
�̄�̄��̄�

nn�n� ym�n���
�� �r�

d

dr
�hm�n���

�� �r�

− cm�n���
�� �r� + bm�n���

�� �r�� , �16�

where


�����
mm�m� =� du Ym�

� �u�Ym����u�Ym����u�

=
�2m� + 1��2m� + 1�
4��2m + 1�

�C�m�,m�,m;0,0,0�C�m�,m�,m;��,��,�� ,

�17�

and where C�m� ,m� ,m ;�� ,���� are Clebsch-Gordan coeffi-
cients. Equation �15� can be solved using standard numerical
methods �23� for the derivatives dbmn�

�� �r� /dr, and these are

integrated numerically to give the bridge function compo-
nents bmn�

�� �r�.
Systems consisting of 2000 molecules were simulated in

the isotropic phase using constant-NVT MC simulations. The
systems consisted of mixtures of ellipsoids with elongations
ep=Ap /Bp=3 and eo=Ao /Bo=1 /3. The ellipsoid axes were
selected to give equal molecular volumes for both compo-
nents: Taking Ap=ep and Bp=1 gives Ao=eo

1/3 and Bo=eo
−2/3.

Simulations were performed at densities �Bp
3 =0.047, 0.094,

0.141, 0.188, 0.235, 0.283, and 0.306. These densities are
equivalent to reduced densities �relative to the close packed
density for a single component system� of ��=� /�cp=0.10,
0.20, 0.30, 0.40, 0.50, 0.60, and 0.65. Systems with rod frac-
tions xp=1−xo=1.00, 0.90, 0.75, 0.60, 0.50, 0.40, 0.25, 0.10,
and 0.00 were studied. Example simulation snapshots are
shown in Fig. 1. h���1,2� components were determined in
the usual manner, statistics for which were gathered over
four million MC sweeps �one attempted translation and rota-
tion per particle�, split into four subruns. The c���1,2� com-
ponents were then determined from Eq. �13�. Systems con-
sisting of 500 molecules were used for the calculation of the

(b)

(a)

(c)

FIG. 1. �Color online� Simulation snapshots for rod-disk mix-
tures with xp=0.10 �top�, xp=0.50 �middle�, and xp=0.90 �bottom�
at ��=0.50. �Online: rods yellow, disks blue�. Snapshots generated
using the QMGA package �24�.
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cavity function. The r separation between the cavity particles
was split into overlapping windows, which are listed in Table
I �note that, at separations greater than the interaction range,
y���1,2�→1+h���1,2��. The weight function for each win-
dow was determined using Wang-Landau sampling over two
million MC sweeps. Once the final weight function was de-
termined, y�1,2� data were gathered over a total of 2�107

MC sweeps, divided into four subruns.

IV. RESULTS

A. Direct and total correlation functions

Shown in Figs. 2 and 3 are selected components of the
direct correlation function �DCF� c���1,2� for the equimolar
�xp=0.5� mixture. At low density ���=0.20� there is good
agreement between the components found from simulation
and those calculated using IET using both HNC and MV
closures. At higher density ���=0.50� marked discrepancies
appear between the DCF components calculated using HNC
closure and those found from simulation. This is most no-

ticeable in the isotropic c000
�� components. In contrast, the

DCF components calculated using the MV closure remain in
good agreement with simulation.

DCF components for the asymmetric mixture with
xp=0.90 at ��=0.50 are shown in Fig. 4. It is noticeable that
there is very little difference between the DCF components,
both from simulation and IET, for this mixture and the sym-
metric case. In fact, this holds true for all mixture composi-
tions. As for the symmetric mixture, the DCF components
calculated using the MV closure are in better agreement with
simulation than those calculated using the HNC closure.

Also shown in Figs. 2–4 are components of the Parsons-
Lee �PL� DCF �25–27�, which is given by

TABLE I. Window intervals used in calculation of cavity
function.

�, � Window intervals �r /Bp�

p , p �0.03, 0.50�, �0.20, 1.20�, �1.00, 2.00�, �1.80, 2.80�,
�2.60, 3.60�

p , o �0.03, 0.50�, �0.20, 1.20�, �1.00, 2.00�, �1.80, 2.80�
o , o �0.03, 0.50�, �0.20, 1.20�, �1.00, 2.00�, �1.80, 2.30�
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FIG. 2. �Color online� Components of the direct correlation
function �evaluated in the molecular frame� for the xp=0.50 mixture
at density ��=0.20. Components found from MC simulations are
denoted by circles, those from IET using the HNC closure denoted
by the solid line, IET using the MV closure denoted by dashed line,
and the Parsons-Lee DCF is denoted by the dotted line. The statis-
tical error in the MC results is smaller than the symbol size. Note
that the HNC and MV results for the c220

�� �r� are indistinguishable on
the above scale.
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FIG. 3. �Color online� Components of the direct correlation
function �evaluated in the molecular frame� for the xp=0.50 mixture
at density ��=0.50. Symbols as in Fig. 2. The statistical error in the
MC results is smaller than the symbol size.
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FIG. 4. �Color online� Components of the direct correlation
function �evaluated in the molecular frame� for the xp=0.90 mixture
at density ��=0.50. Symbols as in Fig. 2. The statistical error in the
MC results is smaller than the symbol size.
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c��
PL�1,2� =

1 − 	/4
�1 − 	�4 f���1,2� , �18�

where 	 is the packing fraction. In the partial overlap region
the 000 component is in reasonable agreement with the MC
and IET data. At low density there is also fair agreement with
the 220 component in this region. However, at higher density
the comparison is much poorer, in agreement with previous
comparisons for the single component fluid �28�. In the core
region the PL DCF fails completely �as f���1,2�=−1 here�.
In all cases the DCF components calculated using IET are in
better agreement with MC results than those from PL theory.

The effect of changing mixture composition may be seen
in h���1,2�. Shown in Fig. 5 are selected hmn�

�� �r� compo-
nents, calculated from simulation �components calculated us-
ing the IET give similar results�. The change in h���1,2�
with mixture composition is most noticeable in the region
2.5�r /Bp�3.5.

B. Bridge function

Shown in Figs. 6 and 7 are selected bridge function com-
ponents for the xp=0.5 mixture, calculated from MC simula-
tions and IET using the Verlet bridge closure �for the HNC
closure b���1,2�=0�. At low densities ���=0.20� these are in
good agreement with each other, with some discrepancies in
the region r→0. For higher densities ���=0.50� the differ-
ence between the simulation and IET-MV bridges is more
apparent. This discrepancy is most noticeable in the “like”
components bmn�

pp �r� and bmn�
oo �r�, which are overestimated in

the MV results. It should be noted that the bridge function
components calculated using MV closure are however, in
much better agreement with simulation than those calculated
using the Percus-Yevick closure or from a low order virial
expansion �11�.

Shown in Fig. 8 are components of the bridge function for
the xp=0.10 and xp=0.90 mixtures at ��=0.50. For these

mixture compositions there is little difference between the
simulation bridge function components. However, the mag-
nitude of the bridge function components for these composi-
tions are smaller than those for the symmetric mixture. By
contrast the bridge functions calculated using the MV closure
are of larger magnitude than for the symmetric case. There is
also a larger difference between the components for the
xp=0.10 and xp=0.90 mixtures than in the MC results.

More insight into the bridge function may be gained from
the so-called Duh-Haymet plots �29�, in which the b���1,2�
are plotted as functions of 	���1,2�. Shown in Fig. 9 are DH
plots for the xp=0.10, xp=0.50, and xp=0.90 mixtures at
��=0.50. The data points in Fig. 9 correspond to values of
b���1,2� and 	���1,2� for fixed orientations given defined
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FIG. 5. �Color online� Components of the total correlation func-
tion �evaluated in the molecular frame� found from MC simulations
at ��=0.50. The solid line denotes the xp=0.90 mixture, dotted line
xp=0.50, and dashed line xp=0.10. Successive curves are offset by
0.1 �h000

�� �r�� or 0.2 �h220
�� �r�� units for clarity.
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FIG. 6. �Color online� Components of the bridge function
�evaluated in the molecular frame� for the xp=0.50 mixture at ��

=0.20. Simulation data denoted by circles; IET-MV data shown by
solid line. For the b000�r� components �left� the statistical error in
the MC results is smaller than the symbol size.
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FIG. 7. �Color online� Components of the bridge function
�evaluated in the molecular frame� for the xp=0.50 mixture at
��=0.50. Symbols as in Fig. 6. The statistical error in the MC
results is smaller than the symbol size.

STRUCTURE OF MOLECULAR LIQUIDS: HARD ROD-DISK… PHYSICAL REVIEW E 77, 011202 �2008�

011202-5



Table II. Also shown are the results for the one-component
e=3 and e=1 /3 fluids �12�. While there is a degree of scatter
in the MC results, bridge functions for different orientations
and mixture compositions fall approximately on the same
curve. In addition, the plots of b���r� fall on similar curves
for the different � ,�. This is consistent with the behavior
seen for single component fluids of spheroids where there is
good agreement between bridge functions for spheroids of
elongation e and 1 /e �12�. Comparison with the MV bridge
function shows that this overestimates the magnitude of
b���1,2�.

C. Equation of state and stability

Shown in Fig. 10 is the equation of state data for the xp
=0.50 and xp=0.90 mixtures, found from MC simulations
and IET theory. This is an important test: The equation of
state found using a thermodynamically self-consistent clo-
sure would be the same when found using either the virial
�V� or compressibility �C� routes �10�.

At low densities, there is good agreement between the
different closures and the MC data. There is also only a small
difference between V and C equations of state. On increasing
density, a large gap between the V and C equations of state
appears for the HNC closure. The MV closure is seen to
significantly reduce the gap between these. The different
equations of state for both closures bracket the MC equation
of state. The relative magnitudes of the V and C equations of
state change for the two closures. We note also that the varia-
tion of the prolate fraction induces a slight shift in the equa-
tion of state curves, but with a similar thermodynamic incon-
sistency gap.
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FIG. 8. �Color online� Components of the bridge function
�evaluated in the molecular frame� for the xp=0.90 and xp=0.10
mixtures at ��=0.50 calculated from MC simulation and IET with
MV closure. Data for xp=0.90 mixture shown by circles �MC� and
solid line �MV�, and xp=0.10 squares �MC� and dashed line �MV�.
The statistical error in the MC results is smaller than the symbol
size.
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FIG. 9. �Color online� Duh-Haymet plots of bridge functions for
fixed orientations for mixtures with xp=0.10 �circles�, xp=0.50
�squares�, and xp=0.90 �diamonds� at ��=0.50. The triangles show
the bridge function for the single component e=3 and e=1 /3 fluids
and the solid lines denote the MV bridge function. Orientations are
defined in Table II: e , s , t , x �color online: black, red, green,
blue, respectively�. Duh-Haymet plots for po and oo are shifted
down by four and eight units, respectively, for clarity.

TABLE II. Orientations of molecules �with respect to center-
center vector r� used in Duh-Haymet plots �Fig. 9�. The relative
orientation angles are defined by cos �1=u1 · r̂, cos �2=u2 · r̂, and
cos �= p̂1 · p̂2, where p̂i is the unit vector in the direction pi=ui� r̂.

Orientation e s t x

� �deg� 0 0 0 90

�1 �deg� 0 90 0 90

�2 �deg� 0 90 90 90
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FIG. 10. �Color online� Equation of state �P /� where P is the
pressure, �=1 /kBT, and � is the density, plotted against reduced
density ��, for xp=0.50 �top� and xp=0.90 �bottom� mixtures. MC
data shown by circles, HNC is shown in black and MV by gray
�online red�, with the virial and compressibility equations of state
shown by the solid and dashed lines. The statistical error in the MC
results is smaller than the symbol size.
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From density functional theory, the stability of the isotro-
pic phase with respect to the nematic phase may be deter-
mined from the direct correlation function in the isotropic
phase �30�. For a one-component system, the isotropic phase
is stable when the Kerr coefficient

K = 1 −
�


5
c̃220 � 0, �19�

where c̃220� c̃220�k=0� is the Fourier transform of the rel-
evant angular component of the direct correlation function
evaluated in the laboratory frame, at zero wave number. For
a two-component mixture K is given by the determinant of
the stability matrix

K = �1 −
�p


5
c̃pp

220 
�p�o

5 c̃po
220


�p�o

5 c̃po
220 1 −

�o


5
c̃oo

220� , �20�

where again the Fourier transforms are evaluated at k=0.
Figure 11 shows that, in contrast to the equation of state,

the HNC solution provides a better description of the Kerr
coefficient than the MV closure. Both the MC and IET Kerr
coefficients vary monotonically with xp.

V. CONCLUSIONS

Using MC simulations and IET, with two different closure
relations, the correlation functions and thermodynamics are
studied for a mixture of rod- and disk-shaped molecules, at a
range of densities and mixture compositions in the isotropic
phase. From MC simulation, the direct correlation function is
found to be insensitive to changing the mixture composition,
while the total correlation function shows some systematic
variation with changing xp. At low densities, good agreement
is found between MC and IET using both HNC and MV
closures. For higher densities, significant discrepancies ap-
pear between MC and HNC results, whereas MV results re-
main in good agreement. This remains true when the mixture
composition changes. Bridge function components found in
MC simulations agree well with those calculated from IET

using the MV closure, particularly at low densities.
Comparison of thermodynamic properties also shows that

the MV closure is superior to the HNC closure. This is most
noticeable in the equation of state, where the inconsistency
between the compressibility and virial equations of state is
significantly smaller using the MV closure than using the
HNC closure. However, in common with the single-
component system �12,15�, the stability of the isotropic
phase with respect to the nematic is poorly described by the
MV closure.
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